Start with Python and Pandas – Part 3
Hello Friends! I’ll be continuing from previous article about Python and we’ll learn more about Python.
List unique values in a DataFrame column
df['Column Name'].unique()
Quick overview of DataFrame
df.describe()
df.info()
Find data type
filteredColumns = empDfObj.dtypes[empDfObj.dtypes == np.object]
df.drop(columns = filteredColumns)
df.dtypes
Find unique
abc = df.columns[df.nunique() <= 1] drop unique columns df.drop(columns = abc)
Drop columns in which more than 10% of values are missing:
df.dropna(thresh=len(df)*0.9, axis='columns')
View a range of rows of a dataframe
df.iloc[2531:2580]
Remove / delete rows where a condition or conditions are met
df = df.drop(df[df.score < 50].index)
Grab DataFrame rows where specific column is null/notnull
newdf = df[df['column'].isnull()]
For more quick refresh of pandas –
https://gist.github.com/fomightez/ef57387b5d23106fabd4e02dab6819b4
Bruh, awesome! You are becoming pro in python